Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope.

نویسندگان

  • Krishnakumar Venkateswaran
  • Austin Roorda
  • Fernando Romero-Borja
چکیده

We present axial resolution calculated using a mathematical model of the adaptive optics scanning laser ophthalmoscope (AOSLO). The peak intensity and the width of the axial intensity response are computed with the residual Zernike coefficients after the aberrations are corrected using adaptive optics for eight subjects and compared with the axial resolution of a diffraction-limited eye. The AOSLO currently uses a confocal pinhole that is 80 microm, or 3.48 times the width of the Airy disk radius of the collection optics, and projects to 7.41 microm on the retina. For this pinhole, the axial resolution of a diffraction-limited system is 114 microm and the computed axial resolution varies between 120 and 146 microm for the human subjects included in this study. The results of this analysis indicate that to improve axial resolution, it is best to reduce the pinhole size. The resulting reduction in detected light may demand, however, a more sophisticated adaptive optics system. The study also shows that imaging systems with large pinholes are relatively insensitive to misalignment in the lateral positioning of the confocal pinhole. However, when small pinholes are used to maximize resolution, alignment becomes critical.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope.

We present imaging results in human retinal tissue in vivo that allowed us to determine the axial resolution of the adaptive optics scanning laser ophthalmoscope (AOSLO). The instrument is briefly described, and the imaging results from human subjects are compared with (a) the estimated axial resolution values for a diffraction-limited, double-pass instrument and (b) the measured one for a cali...

متن کامل

Adaptive optics scanning laser ophthalmoscopy.

We present the first scanning laser ophthalmoscope that uses adaptive optics to measure and correct the high order aberrations of the human eye. Adaptive optics increases both lateral and axial resolution, permitting axial sectioning of retinal tissue in vivo. The instrument is used to visualize photoreceptors, nerve fibers and flow of white blood cells in retinal capillaries.

متن کامل

Adaptive Optics Confocal Scanning Laser Ophthalmoscope

Scanning laser ophthalmoscope (SLO) was first presented by R. H. Webb (R. H. Webb, et al, 1987) in 1987, which is the same as a scanning laser microscope except that human eye is used as the objective lens and retina is usually the sample being imaged. With its high contrast real-time imaging and axial sectioning capability, SLO has many advantages and applications in retina imaging (Austin. Ro...

متن کامل

MEMS-based adaptive optics scanning laser ophthalmoscopy.

We have developed a compact, robust adaptive optics (AO) scanning laser ophthalmoscope using a microelectromechanical (MEMS) deformable mirror (DM). Facilitated with a Shack-Hartmann wavefront sensor, the MEMS-DM-based AO operates a closed-loop modal wave aberration correction for the human eye and reduces wave aberrations in most eyes to below 0.1 microm rms. Lateral resolution is enhanced, an...

متن کامل

Dual electro-optical modulator polarimeter based on adaptive optics scanning laser ophthalmoscope

We constructed a high speed and high-resolution Stokes vector retinal imaging polarimeter with dual electro-optical modulators based on adaptive optics scanning laser ophthalmoscope. By varying the voltages on the EO crystals line by line, we were able to measure over 500,000 Stokes vectors per second. We used this system in three human subjects demonstrating the capability of the system to be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2004